Cognitive Computing: From hype and pilot to going mainstream implementation

Cognitive Computing started in late 1960’s with initial innovation around supercomputers. However the decision making capability, simulation and self learning intelligence was limited. With major advances in computing power, cognitive behavior science, computational intelligence, the researchers in Cognitive Computing made significant advancement. With advanced medical science and neuropschology, computer scientists were able to study the mechanics of human brain and that allowed the scientists to build computative models modeled after human mind. These models would allow association with various attributes and parameters from past experiences into cognitive systems. Cognitive computing and Decision Science was born with scientists developing computers that that operated at a higher rate of speed and accuracy than the human brain did.

As per IBM, Cognitive computing systems learn and interact naturally with people to extend what either humans or machine could do on their own. They help human experts make better decisions by penetrating the complexity of Big Data. Big Data growth is accelerating as more of the world’s activity is expressed digitally. Not only is it increasing in volume, but also in speed, variety and uncertainty. Most data now comes in unstructured forms such as video, images, symbols and natural language – a new computing model is needed in order for businesses to process and make sense of it, and enhance and extend the expertise of humans. Rather than being programmed to anticipate every possible answer or action needed to perform a function or set of tasks, cognitive computing systems are trained using artificial intelligence (AI) and machine learning algorithms to sense, predict, infer and, in some ways, think.

Cognitive computing reassess the nature of relationships between multiple variables and the environment factors. It can help assess the nature of the relationship between people and their increasingly pervasive today’s digital environment. They may play the role of assistant or coach for the user, or they may act virtually autonomously in many problem-solving situations. The boundaries of the processes and domains these systems will affect are still elastic and emergent. They must learn as attribures and variables changes, and as questions and decisions evolve. They must resolve ambiguity and tolerate unpredictability. They must be engineered to feed on dynamic data in real time, or near real time. They must interact easily with users so that those users can define their needs comfortably. They may also interact with other processors, devices and cloud services, as well as with people. They must aid in defining a problem by asking questions or finding additional source input if a problem statement is ambiguous or incomplete. They must “remember” previous interactions in a process and return information that is suitable for the specific application at that point in time. They must understand, identify and extract contextual elements such as meaning, syntax, time, location, appropriate domain, regulations, user’s profile, process, task and goal. They may draw on multiple sources of information, including both structured and unstructured digital information, as well as sensory inputs (visual, gestural, auditory or sensor-provided). The output from Cognitive systems may be prescriptive, suggestive, instructive or simply entertaining.

Cognitive informatics is a cutting-edge and multi-disciplinary research field that tackles the fundamental problems shared by modern informatics, computation, software engineering, AI, computational intelligence, cybernetics, cognitive science, neuropsychology, medical science, systems science, philosophy, linguistics, economics, management science, and life sciences. The development and the cross fertilization between the aforementioned science and engineering disciplines have led to a whole range of emerging research areas known as cognitive informatics.

Sample Cognitive Computing Use Cases

  1. Shopping: Cognitive computing systems’ ability to evaluate and generate hypotheses will help retail industries to find patterns, correlations and insights in mountains of unstructured and structured data. Watson’s app development platform is already moving into this physical-virtual space. The startup, Fluid, has layered Watson on top of its Expert Personal Shopper app for retail brands. Watson will be your personal shopping assistant. Store associates will also have similar intelligent tech providing them instant product information, customer loyalty data, sales histories, user reviews, blogs and magazines, so that when you do need to talk with another human, they know exactly how to help.
  2. Medical: evidence-based learning, hypothesis generation and natural-language skills could help medical professionals make key decisions in patient diagnosis and treatment. The objective is to give Doctors and Surgeons a quick way to access diagnostic and treatment options based on updated research.
  3. Banking: In fraud detection, financial institutions could have cognitive tools that enable them to go beyond analyses of cardholders’ credit transaction histories; cognitive computing might provide them with new “associational” intelligence, such as when an individual is most likely to make purchases, what he is likely to buy, and under what circumstances.
  4. Finance: Benefits from Cognitive Computing also will be seen by financial advisors, including individuals that handle their own portfolios, as the technology enables bringing together relevant, current and personalized information and remembering questions and preferences
  5. Weather Forecasting and Planning: Weather forecasting can benefit from Cognitive Computing and big data analytics. For instance, IBM’s Deep Thunder, a research project that creates precise, local weather forecasts, can predict severe storms in a specific area up to three days before the event. This early-warning system gives local authorities and residents enough time to make preparations

As per Deloitte University Press – Cognitive analytics can help address some key challenges. It can improve prediction accuracy, provide augmentation and scale to human cognition, and allow tasks to be performed more efficiently (and automatically) via context-based suggestions. For organizations that want to improve their ability to sense and respond, cognitive analytics offers a powerful way to bridge the gap between the promise of big data and the reality of practical decision making.

IBM has calculated that the market size for cognitive computing services in the private sector is in the neighborhood of $50 billion. At present, there are very few vendors in the field. While IBM has announced the creations of the Watson Group to commercialize cognitive computing and Google has acquired AI startup Deepmind, there are few companies in the space. Much of the work is still happening at a university level or within research organizations. Cognitive computing is still early from a commercialization perspective. It is likely another three to five years before an industry wide adoption and its impact on a wide range of companies. For a while at least, cognitive computing will fill a niche in industries where highly complex decision making is the norm, such as healthcare and financial markets. Eventually, it will become a normal tool in every corporate toolbox, helping to augment human decision making.